

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME								
	CENTRE NUMBER					CANDIDATE NUMBER			
*									
	PHYSICS							0625/53	
7	Paper 5 Practical Test						May/June 2012		
ω							1 hour 15		
00							i nour 15	minutes	
σ 	Candidates answer on the Question Paper								
* 6 1 7 3 5 8 5 8 9 4 *	Additional Materi	Materials: As listed in the Confidential Instructions							
*				FIDST					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of the page. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
Total		

This document consists of 10 printed pages and 2 blank pages.

1 In this experiment, you will investigate the effect of a load on a rule attached to a forcemeter.

Carry out the following instructions, referring to Fig. 1.1. The apparatus has been set up for you.

2

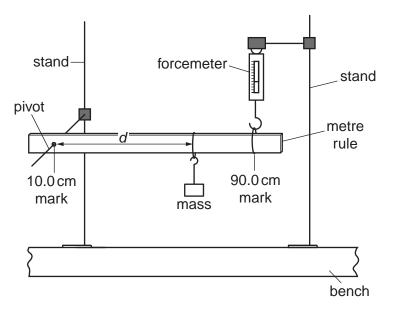


Fig. 1.1

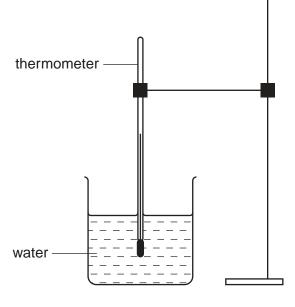
The rule is pivoted near one end. Near the other end, the rule is attached to a forcemeter. A mass is hanging from the rule at a distance *d* from the pivot.

- (a) (i) Move the mass to a distance d = 70.0 cm from the pivot. Record the distance d in Table 1.1.
 - (ii) Adjust the position of the forcemeter by raising or lowering the clamp until the rule is horizontal and the forcemeter is vertical. Measure and record in the table the reading F on the forcemeter.

d/	F/

Table 1.1

- (iii) Repeat steps (i) and (ii) using *d* values of 60.0 cm, 50.0 cm, 40.0 cm, 30.0 cm, 20.0 cm and 10.0 cm.
- (iv) Complete the column headings in the table.


(b) A student thinks that *F* is directly proportional to *d*. For Examiner's Use Suggest the graph that you could plot to test this idea. You are not asked to plot the (i) graph. against (ii) State the properties of the line that would indicate that *F* is directly proportional to *d*. 1. 2. [3] (c) A spirit level is a piece of equipment that is placed on a surface to check whether the surface is horizontal. Suggest why a spirit level balanced on the rule is not suitable for checking whether the rule is horizontal in this experiment.[1] (d) Describe briefly how you checked that the rule was horizontal. You may draw a diagram.

.....[1]

[Total: 10]

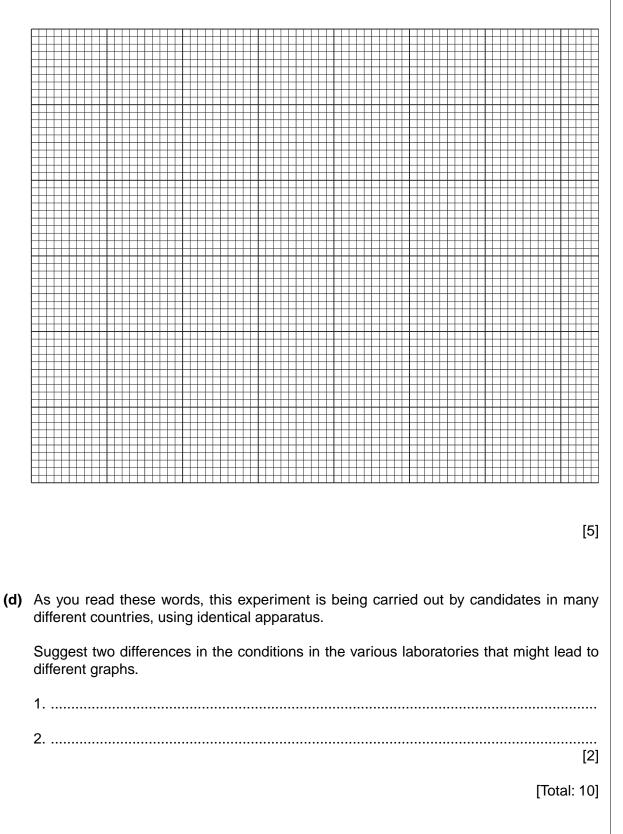
2 In this experiment, you will investigate the rate of cooling of water.

You are provided with a supply of hot water. Carry out the following instructions referring to Fig. 2.1.

(a) Measure and record room temperature $\theta_{\rm R}$.

*θ*_R =[1]

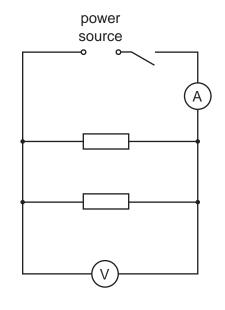
(b) (i) Pour approximately 200 cm³ of the hot water supplied into the beaker. Place the thermometer in the beaker of water.


Measure the temperature θ of the water. Record θ in Table 2.1 at time t = 0 s.

(ii) Start the stopclock and record in the table the temperature of the water at 30s intervals until you have a total of six values up to time t = 150 s.

t/s	θ/°C

https://xtremepape.rs/



(c) Plot a graph of θ /°C (*y*-axis) against *t*/s (*x*-axis).

https://xtremepape.rs/

3 In this experiment, you will investigate resistor combinations in circuits.

Carry out the following instructions referring to Fig. 3.1.

(a) (i) Switch on. Measure and record the potential difference V_1 across the resistors and the current I_1 in the circuit. Switch off.

*V*₁ =

*I*₁ =

(ii) Calculate the total resistance $R_{\rm P}$ of the combination of the two resistors arranged in parallel, using the equation $R_{\rm P} = \frac{V_1}{I_1}$.

R_P =

- (b) Rearrange the circuit so that the two resistors are connected in **series** and the voltmeter is connected to measure the potential difference across **both** resistors.
 - (i) Switch on. Measure and record the potential difference V_2 across the resistors and the current I_2 in the circuit. Switch off.

https://xtremepape.rs/

Calculate 4R_P.

(iii)

	(ii)	Calculate the total resistance $R_{\rm S}$ of the combination of the two resistors arranged	For Examiner's
		in series, using the equation $R_{\rm S} = \frac{V_2}{I_2}$.	Use
		R _S =[2]	
(c)	The	eory suggests that $R_{\rm S} = 4R_{\rm P}$ if the two resistors have the same value.	
		te whether your results indicate that the two resistors have the same value. Justify r answer with reference to the results.	
	stat	ement	
	just	ification	
		[1]	
(d)	Usi	ng the circuit described in (b) , replace the two series resistors with the two lamps.	
	(i)	Draw a circuit diagram of the new circuit using standard symbols.	
		[2]	
	(ii)	Switch on. Measure and record the potential difference V_3 across the lamps and the current I_3 in the circuit. Switch off.	
		V ₃ =	
		/ ₃ =	
	(iii)	Calculate the total resistance $L_{\rm S}$ of the combination of the two lamps arranged in	
		series using the equation $L_{\rm S} = \frac{V_3}{I_3}$.	
		1 [4]	
		L _S =[1]	

https://xtremepape.rs/

[Turn over

- (e) Rearrange the circuit to that shown in Fig. 3.1 but with the lamps in place of the resistors.
 - (i) Switch on. Measure and record the potential difference V_4 across the lamps and the current I_4 in the circuit. Switch off.

For Examiner's Use

*V*₄ = *I*₄ = Calculate the total resistance $L_{\rm P}$ of the combination of the two lamps arranged in (ii) parallel using the equation $L_{\rm P} = \frac{V_4}{I_A}$. *L*_P = (iii) Calculate $4L_{\rm P}$. 4L_P = [1] A student suggests that using lamps instead of resistors changes the conditions of the (f) experiment and that $4L_{P}$ will not be equal to L_{s} because of a heating effect. From your own observations, state one piece of evidence that supports the student's suggestion that there is a heating effect. You should not do any further calculations.[1] [Total: 10]

BLANK PAGE

9

4 In this experiment, you will determine the refractive index of the material of a transparent block.

Carry out the following instructions, referring to Fig. 4.1.

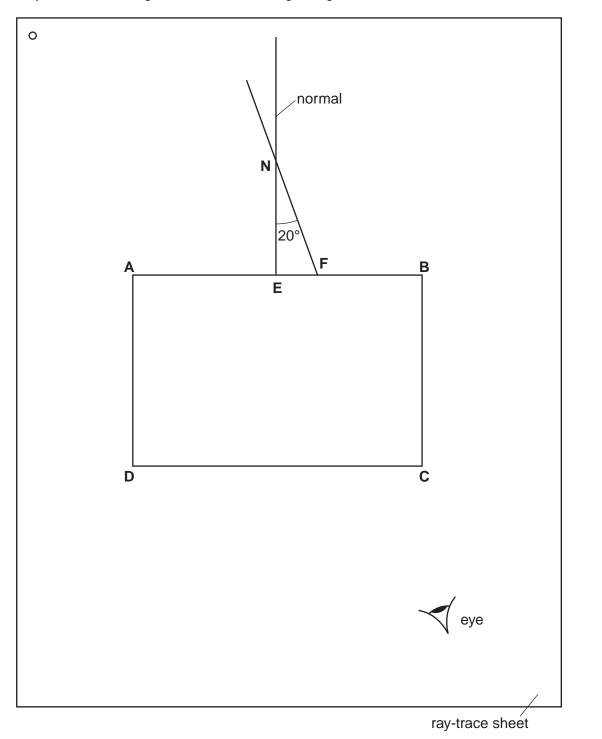


Fig. 4.1

- (a) Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block **ABCD**.
- (b) Remove the block and draw a normal at the centre of side AB. Label the point E where the normal crosses AB. Mark a point N on the normal 4.0 cm from E and outside the block as shown in Fig. 4.1.

https://xtremepape.rs/

10

For

Examiner's Use

For Examiner's Use

a =[1]

- (d) Extend the line NF beyond N and place the paper on the pin board.
- (e) Place two pins P_1 and P_2 on the line through **F** and **N**, placing one pin close to **F**.
- (f) Replace the block and observe the images of P_1 and P_2 through side **CD** of the block so that the images of P_1 and P_2 appear one behind the other.

Place two pins P_3 and P_4 between your eye and the block so that P_3 and P_4 and the images of P_1 and P_2 , seen through the block, appear one behind the other.

Mark the positions of P_1 , P_2 , P_3 and P_4 . Remove the block.

- (g) Draw a line joining the positions of P₃ and P₄. Continue the line until it meets **CD**. Label this point **G**.
- (h) Draw the line GF and continue it until it meets the normal. Label this point H.
- (i) Measure and record the length *b* of the line **FH**.

b =[1]

(j) Calculate the refractive index n of the material of the block, using the equation $n = \frac{D}{a}$.

a =

(k) Repeat steps (c) – (j) but with the line from N drawn at 25° to the left of the normal.

b =

n =

Tie your ray trace into this Booklet between pages 10 and 11. [5]

[Total: 10]

[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.